কেমন আছও বন্ধুরা ? আজকে আমরা এমন একটা সমস্যার সমাধান করব যাতে আমাদের Previous Knowledge (Class 9-10) কাজে লাগবে । তাহলে চল শুরু করা যাক ।

where x = sqrt(m)/sqrt((m+n))
4. As ADE and ABC are সদৃশকোণী ত্রিভুজ so
AD/AB = DE /BC
বা , AD = DE/BC* AB
৫ । Simply use this formula .

Problem Statement :
You are given AB, AC and BC. DE is parallel to BC. You are also given the area ratio between ADE and BDEC. You have to find the value of AD.
Solution Idea :
1. Let tri-angle ADE / BDEC = m/n . 2 . কাজেই ADE / ABC = m/(m+n)
3. From উপপাদ্য 3.10 (Higher Geometry -class 9-10) we know that
You are given AB, AC and BC. DE is parallel to BC. You are also given the area ratio between ADE and BDEC. You have to find the value of AD.
Solution Idea :
1. Let tri-angle ADE / BDEC = m/n . 2 . কাজেই ADE / ABC = m/(m+n)
3. From উপপাদ্য 3.10 (Higher Geometry -class 9-10) we know that
ADE / ABC = DE^2 / BC ^ 2
বা , sqrt(m)/sqrt((m+n)) = DE/BC
বা , sqrt(m)/sqrt((m+n)) = DE/BC
বা , x = DE/BC
where x = sqrt(m)/sqrt((m+n))
4. As ADE and ABC are সদৃশকোণী ত্রিভুজ so
AD/AB = DE /BC
বা , AD = DE/BC* AB
বা , AD = x * AB .
৫ । Simply use this formula .
Code :
#include<cstdio>
#include<iostream>
#include<cmath>
using namespace std;
int main()
{
int i,test;
double AB,BC,CA,AD,DE,ratio;
cin>>test;
for(i=1;i<=test;i++)
{
cin>>AB>>CA>>BC>>ratio;
ratio = ratio/(ratio+1);
AD = AB*sqrt(ratio);
printf("Case %d: %lf\n",i,AD);
}
return 0;
}
#include<cstdio>
#include<iostream>
#include<cmath>
using namespace std;
int main()
{
int i,test;
double AB,BC,CA,AD,DE,ratio;
cin>>test;
for(i=1;i<=test;i++)
{
cin>>AB>>CA>>BC>>ratio;
ratio = ratio/(ratio+1);
AD = AB*sqrt(ratio);
printf("Case %d: %lf\n",i,AD);
}
return 0;
}